Fault Diagnosis Based on Fuzzy C-means Algorithm of the Optimal Number of Clusters and Probabilistic Neural Network
نویسندگان
چکیده
Fault diagnosis is essential for the reliable, safe, and efficient operation of the plant and for maintaining quality of the products in industrial system. This paper presents an ensemble fault diagnosis algorithm based on fuzzy c-means algorithm (FCM) with the Optimal Number of Clusters (ONC) and probabilistic neural network (PNN), called FCM-ONC-PNN. In clustering methods, the estimation of the optimal number of clusters is significant for subsequent analysis. As a simple clustering method, FCM has been widely discussed and applied in pattern recognition and machine learning, but FCM could not guarantee unique clustering result because initial cluster number is chosen randomly. As the number of clusters is randomly chosen, the iterative amount is large and the result of the classification is unstable. In this paper, firstly subtractive clustering is proposed to find the optimal number of clusters and the clustering results of the FCM are compared with random initialization method, and then PNN is used to classify the clustering data of FCM. The experiments show that the modified initial cluster number of FCM algorithm can improve the speed, and reduce the iterative amount. At the same time, FCM-ONC-PNN approach can make classification more stable and have higher precision.
منابع مشابه
Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملBearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملDesigning of a New Transformer Ground Differential Relay Based on Probabilistic Neural Network
Low- impedance transformer ground differential relay is a part of power transformer protection system that is employed for detecting the internal earth faults. This is a fast and sensitive relay, but during some external faults and inrush current conditions, may be exposed to maloperation due to current transformer (CT) saturation. In this paper, a new intelligent transformer ground differentia...
متن کامل